DOI:10.6291/AIAPM.201912_9.0008

EXCHANGE OPTIONS IN THE REIT INDUSTRY

Gianluca Marcato
Henley Business School, University of Reading, UK
Tumellano Sebehela
School of Construction Economics & Management, WITS University, South Africa
Carlos H. Campani
Coppead Graduate School of Business, Federal University of Rio de Janeiro, Brazil

ABSTRACT

This article models mergers as exchange options where acquirers offer stocks and/or cash to target firms in exchange of acquiring some shareholding in target firms. Mergers analysed in this article happen between homogeneous entities. The Black and Scholes (B–S) and Margrabe models are used to price cash and stocks (including stocks and cash) deals respectively. The merger and acquisition (M&A) traits are grouped as conflict of interest, market growth, funding and specialization. Regression results illustrate that exchange options react to M&A characteristics differently. Thus, the results are beneficial to both sell-and buy-side investors in terms on how one manages merging firms. The goodness of fit suggests that strategic acquisitions played important roles.

JEL classification codes: G34, G12 **Keywords:** Exchange Option, REIT

I. INTRODUCTION

Growth options are suitable to analyse strategic decisions as they capture the flexibility of firms in either allowing scaling down or increasing operations. Therefore, this flexibility is of paramount importance as it indirectly allows firms to hedge against possible emerging risks during the lives of firms. In other words, growth options especially exchange ones have multiple capabilities which go beyond assisting firms in strategic growth ventures. Those exchange options do not occur in isolated environment. That is, there are numerous economic variables or parameters that react in the presence of exchange options being exercised. That relationshipreaction of economic variables in the presence of exchange options is central to this article. Questions that might arise, do those economic variables increase or decrease value of exchange options, who benefits in that kind of environment, etc. Exchange options emerge specifically due to merger and acquisition (M&A) transactions. M&A deals are similar to new ventures. New ventures tend to offer a lot of opportunities for growth. According to Schulte (2018), new ventures offer practical insights into unique enterprises and and new-entrants to markets. On the other hand, M&A represents one of the most important phenomena where exchange options have been explored. Studies in this area argue that option pricing is able to capture the full value of target firms as flexibility would not be accounted for within other modelling set ups. After one of the earliest work applying a general option pricing model to M&A operations (Bhagat, Brickley, & Loewenstein, 1987), other researchers adopted the same theoretical framework to study stocks financed deals in the real estate investment trust (REIT) industry (Sebehela, 2008) and cash financed M&As in non-real estate sectors (Sorwar & Sudarsanam, 2010). The value of new information, especially in option trading environment has been illustrated by He, Lee, and Wei (2010).

This empirical study combines previous studies on growth of REITs and options, and it focuses on REITs as a laboratory to explore exchange options during REIT acquisitions. One believes that this industry represents a unique laboratory to explore the value of such options and its driving factors. The evolution of the REIT industry throughout the world, it is a unique one. U.S. REITs were created on September 14, 1960 when then President Eisenhower signed the REIT Act contained in the Cigar Exercise Tax Extension. On September 15, 1960, National Association of REITs (NAREIT) was created. Initial the REITs debut happened during the mid-1960s, which saw new listing including Continental Mortgage Investors (first one to be listed in the New York Stock Exchange), Bradley Real Estate Investors, First Mortgage Investors, Winthrop Realty Trust, Pennsylvania REIT, and Washington REIT. The first European country to pass REIT legislation

was the Netherlands in 1969. Soon after, in 1971, Australia introduces Listed Property Trusts.

In the U.S. the growth of this industry was fuelled by mortgage REITs and vehicles engaged mainly in land development and construction financing. During the 1973 oil embargo, mortgage REITs were hit hard the most. The Realty Trust Review was launched in March 1970 and devoted exclusively to public real estate securities. Sector specific vehicles were immediately introduced. As an example, the Health Care REIT (then Health Care Fund) was the first REIT in health care established in June 1970. Finally, NAREIT started to produce a publicly available REIT index in January 1972 splitting the sample between equity, mortgage and hybrid REITs. In the 1980s, billions of U.S. dollars were raised in private placements due to the proliferation of real estate tax-sheltered partnerships. Particularly, this era saw the birth of open-end mutual funds primarily investing in REITs, with the first one (National Real Estate Stock Fund) being established in 1985. Today one can count about 200 real estate mutual funds. The first largest real estate mutual fund was Cohen & Steers, and it had \$26 billion assets under management. As far as REIT-related products are concerned, the first real estate exchange traded funds (ETF) (iShares Dow Jones U.S. real estate index fund) was launched in June 2000. After a year, more real estate ETFs followed and today there are about 20 ETFs only investing in REITs.

After the downturn at the end of 1980s, Kimco Realty Corporation made the first equity REIT initial public offering (IPO) in November 1991, while a month after the first REIT reached a market capitalisation of \$1 billion. The introduction of the UPREIT structure started a consolidation period where these vehicles have become larger in size—Simon Property Group is today the biggest REIT and has a market capitalization of \$23 billion. As far as the transparency and knowledge of such investment market and associated returns, in January 1997 one saw improvements thanks to the release of a real time index by NAREIT, which also joined up with European Public Real Estate Association (EPRA) and Euronext to launch the EPRA/NAREIT global real estate index in October 2001. During the same period, Standard & Poor (S&P) opened its indexes to REITs which became part of the biggest 500 companies traded in the U.S. (initially only Equity Office Properties Trust and Equity Residential). According to the REITWatch report as of August 29, 2014, REITs being S&P 500 constituents are 20 with size ranging from \$5 to just over \$53 billion, while S&P 400 mid-cap REIT constituents are 30 with size ranging from at \$1.7 to just over \$10.3 billion and S&P 600 smallcap REIT constituents are 35 with size ranging from \$0.4 to just over \$3.3 billion. Furthermore, the REITWatch report illustrates that there has been consolidation in the U.S. REIT industry: the constituents of S&P 500 are worth \$410.3 billion,

constituents of S&P 400 mid-caps are worth \$149.01 billion, and constituents of S&P 600 small-caps are worth \$50.4 billion.

Today, about 40 countries have REIT legislation in place. The first Asian REIT was introduced in Japan in September 2001, while in Europe France adopted REIT legislation in 2003, Germany in 2007, and the UK in 2007. South Africa introduced REIT legislation in 2012. The significant presence of M&A activities in the REIT industry reveals the potential gains achievable by joining different companies. The reasons of this gain are several and have been explored in the literature. However, so far no REIT study has approached this phenomenon as the exercise of the option to acquire/merge to another firm. In this context the option would be exercised only if a potential growth is achievable. Particularly, these growth options represent exchange options, where one asset (shares of a company) is exchanged for another (shares of the other company involved in an M&A deal).

Numerous questions arise in this article. What is unique about REITs? What is interesting about option pricing theory (OPT) being applied in the REIT industry? Firstly, REITs offer a unique institutional setting with very codified and transparent corporate governance. Hence the option pricing revelation should be more easily identifiable. Secondly, the valuation of a REIT merger could be seen as the union of two funds, or in other words two asset portfolios that are combined together and REIT synergies rules. This article also explores factors that drive options of REIT M&As and this is because some prior empirical studies such as one by Hitt, Hoskisson, and Ireland (1990) illustrated that characteristics of firms contributed to the merged entity value. The four groups of variables explored in this article are conflict of interests—these are variables which benefits one stakeholder while disadvantaging another stakeholder, funding-variables that symbolise how REIT finance their expansion opportunities and growth-those are variables when they are perceived positively by the markets, REITs grownormally their share prices increase. Finally, specialization shows the sector in the real estate industry that a particular REIT invests in. Finally, when M&A deals are financed through the combination of stocks and cash, this article alters the original Margrabe (1978) (henceforth Margrabe) model so that the model prices a M&A deal financed through cash and stocks. All the points raised in this paragraph are the contributions of this article.

The study that is close to this article is Kim (1992). Kim developed an equilibrium option model in the context of option. At the heart of his study, he allowed prices to be dynamic. This article by mentioned three authors, follow the same concept. Although, the Margate model will be expanded but the expanded Margrabe model will be a closed one. For the modelling part, Kim start with the general equilibrium considerations—maximising the utility of individual, then

have dimensional vector for various parameters and there is a risk-free default unit discount bond rate. Central to the analysis, is to determine the optimal investment policy or portfolio—similar to the illustration is this article. In order to explicitly to illustrate equilibrium models, Kim demonstrated two regimes—1 and 2. Regime 1 is on pure exchange economy where one is allowed to consume everything available at that time. More, goods are perishable. Kim states that in case similar to regime 1, a call option is written on another asset which is synonymous with Black and Scholes (B-S) framework. In this article, it would be where deals are financed through only cash. Regime 2 is on the same pure exchange economy except the fact that an individual is given a constant-absolute-risk-aversion utility. Kim opined that in that environment prices do not follow a time-homogenous diffusion process-drift and time are dependent on time because of the discounting factor. A latter situation would be suitable for hedging options (see Sebehela, 2015). That is, just like Kim (1992), this article derives alternative option valuation which can provide useful information when pricing options that cannot be explained by B-S framework. This is because despite that ad_hoc B-S can price options in different circumstances but the equilibria and smiles are open-ended (see Byun, Kim, & Rhee, 2018). Byun et al. investigate two scenarios: first, when implied volatility skew is treated as fixed function of moneyness $\frac{S}{K}$. In the latter case, strike price (K) does not change and

volatility floats as stock index (S) changes-sticky volatility method, second approach that they explored is when is when both K and implied volatility are fixed regardless of S level-sticky delta. Marcato, Sebehera, and Campani (2018) demonstrated that when both K and implied volatility change with respect to the change in S, the volatilities tend to be much better than in sticky volatility and delta cases.

In summary, our results illustrate that some REIT traits contribute to M&A option values and in certain cases REIT M&As might be driven by strategic positioning of firms. More, the results illustrate that when REITs merge, extra values are generated from deals in the form of exchange options. Due to the emerging of exchange options, liquidity in the REIT industry increases and more information spillover to stakeholders happens. Furthermore, one illustrates that some REIT characteristics systematically contribute to option values during M&A activities. Overall, results are in line with prior studies that analyzed abnormal returns in several industries. On the other hand, the impact of variables on emerging exchange options is consistent with the pecking order theory (POT) of finance and OPT. Despite the fact that some models have negative adjusted *R*-squared, the adjusted *R*-squared for the combined models show a significant improvement with more than one fifth of growth options explained by our estimation (Hartzell, Kallberg, & Liu, 2005). The implications from the analysis

are several. Firstly, when REIT firms merge, stakeholders will have better insights in REIT mergers if they price those M&A deals using option pricing techniques. Second, for accurate pricing and hedging, one can infer from coefficients that in certain cases it is costly and at other times it is cheap as illustrated by high and low coefficients respectively. Third, some REIT characteristics (i.e., conflicts of interest, internal funds, and market risk) are important in explaining growth opportunities in mergers. Finally, zero options values suggest that REIT mergers might be driven by strategic objectives as opposed to financial gains.

The remainder of the article is organised as follows. Section II debates the related literature and Section III discusses the theory behind modelling M&A options. Section IV presents the data while Section V presents results on empirical analysis. The last section concludes this study.

II. LITERATURE REVIEW

The literature review is divided into two sections: (1) M&A options—to understand real options in mergers and (2) parameters impacting M&A behavior parameters that influence value during mergers. As stated earlier, the contribution of this article is combining those two narratives.

M&A Options

M&A is a strategy in which firms engage themselves in expansion processes. Reasons cited as M&A drivers by previous studies include information asymmetry, governance, agency conflict, market timing, and monopoly according to Hansen (1987) and Amihud, Lev, and Travlos (1990). All those factors mentioned as reasons driving M&As are underpinned by one motive which is to increase profitability of firms by forming a well-managed merged entity. Previous studies value M&A deals using traditional valuation techniques (TVTs) such as discounted cash flows (DCFs) and traditional accounting principles (see Reinganum & Smith, 1983). One of the short comings of TVTs is that they cannot take into account flexibility embedded in M&A deals. Therefore, a pricing technique that accounts for flexibility in M&A deals is needed and one such technique is OPT. The pricing of exchange options using closed-form solutions on two securities without barriers when exercise prices are uncertain can be traced back to Fisher (1978) and Margrabe (1978), although those studies were not explicit on whether exchange options are found within M&A framework. Although the two models are similar, however, the exercise price in the Fisher model is fundamental price such as net asset value per share while the exercise in Margarbe model is a financial price

such as share price. Both models draw their principles from the Black and Scholes (1973) (henceforth B–S) model.

Some of the earliest study that was explicit in exploring option pricing within M&A framework is Benston, Hunter, and Wall (1995), which is based on their argument on insurance put-option hypothesis (IPOH) without using a specific option pricing model. IPOH states that when one deposits money into a bank, there is a premium paid into the bank account which acts as insurance for the deposit because regulators use policies to force banks to meet certain minimum levels of liquidity. That premium is measured as the difference between acquisition price paid for target firm and the market value of a target firm. If the difference is positive then the difference is consistent with IPOH. The results were inconsistent with IPOH because acquiring banks wanted to increase risk or enhance operations of target firms so that returns of the merged entity increase from addition of new products.

From early 2000s, option pricing within M&A framework compared flexibility values of DCFs and real options (Qiu & Yeo, 2003), and deferral options in M&As when one merging firm is private (Fuller, Netter, & Stegemoller, 2002). Officer (2004) and Subramanian (2004) are some of empirical studies that acknowledged limitations of options models like B–S model: according to them, these limitations were due to the type of options embedded in their data samples. They argue that options models should be improved in order to capture other parameters that were not captured by original options models such as the B–S model.

Officer (2004) explored deals financed through combination of stocks and cash, in addition, when collars entice mergers. One of arguments put forward in relation to collars is that they allow specific exchange ratio conditional on certain price levels provided the potential merger stays within anticipated price levels. As in the REIT industry, it is a normal practice that exchange ratios at announcement and closing dates are the same, this article adopts the same principle. Due to the conditions of collars in M&As, Officer used both the B–S model and Asian option-pricing algorithms. The other trait of a collar is that its inclusion minimises re-negotiation possibilities when resolutions are passed, a phenomenon dissimilar to American options. Despite of differences in the B–S model and Asian option-pricing algorithms results, similar patterns were illustrated by both groups of results.

The use of option pricing to value corporations has been used extensively, not only in real estate markets, where very recently Cline, Fu, Springer, and Tang (2014) explore stock options and combine them with REITs secondary equity offerings data to investigate insider trading activities. From mid-2000s, Hackbarth

and Morellec (2008) and Sorwar and Sudarsanam (2010) started to value M&A synergies using option pricing techniques. Sorwar and Sudarsanam priced put options within B-S framework and, as in Bhagat et al. (1987); they assumed that the observed price is the difference between the underlying price and fractional put option. Implied options prices and volatilities were modelled based on the logic of the later statement. Results indicated that there is a premium obtained by target firms from acquiring firms in M&A deals. Hackbarth and Morellec analysed stock returns behaviour based on real options approach. Hackbarth and Morellec argued that growth options in M&A context involves two firms entering one deal which implies that one is valuing expansion strategies of acquiring firms and exit strategies of target firms simultaneously. They designed a dynamic model of takeovers in order to account for many model parameters including competition, risks associated with M&As, firms operations and deferral possibilities. However, they acknowledged that the Margrabe model is appropriate in pricing exchange options when M&A deals are financed through stocks. Results of Hackbarth and Morellec indicate that risks decrease after M&A completion period while returns increase during the same period.

After determining the exchange option value associated to each M&A deal, this article is also interested in identifying the sources of such value and hence whether there is a systematic component attached to specific REIT characteristics.

Parameters Impacting M&A Behavior

Born, Officer, and McIntosh (1989) exemplified effects of M&As on wealth of shareholders of target firms. The sample was made of M&As over a period of 1969–1986. Born et al. used market-adjusted return (MAR) method to define wealth and used different windows to calculate excess returns (ERs) and cumulative excess returns (CERs). For (+8; 0) window ERs were statistically significant but CERs were statistically insignificant, and for the rest of pre-M&A periods, ERs and CERs were statistically insignificant, for post-M&A period, ERs were statistically significant for (0; -10) window, and other post-M&A windows ERs and CERs were statistically insignificant. According to Womack (2012) the reason why excess returns are statistically insignificant especially in long run has to do with the fact that REIT M&As are beneficial to everyone. Born et al. argue that although ERs and CERs are statistically insignificant especially in the long run, excess returns presence illustrate information asymmetry in the REIT industry. From the 1990s, empirical studies on REIT M&As explored multiple factors that drive REIT M&As. Among cited REIT M&A drivers are sizes of firms, earnings growth, governance structures, value creation and information asymmetry (Campbell, Ghosh, & Sirmans, 2001, 2005; Mueller, 1998). Mueller (1998) illustrated that size has impact on the growth of REIT firms; although, in the long run what matters is funds from operations (FFOs) per share because dividends effects need to be accounted for in value calculations. In addition, Mueller stated that for small-cap and mid-cap REIT firms, growth in value is largely bolstered by quality as opposed to size of merging firms over the 1994–1998 period. A full review of real estate merger motives is presented in Anderson et al. (2009).

Campbell et al. (2001) explored REIT stocks financed M&As when target is a private firm. According to Campbell et al., when target is private, acquiring firm would require positive returns because of presence of information asymmetry and this is consistent with blockholders hypothesis. Campbell et al. used cumulative absolute returns (CARs) for acquiring and target firms to illustrate effects of information asymmetry on M&As. Starting from one-day window, day 0 to (-1; 0; +1) including (0; -1) windows, Campbell et al. showed that abnormal returns (ARs) coefficients are small and statistically significant. However, in the long run, ARs and CARs coefficients were statistically insignificant. Moreover, Campbell et al. used regressions and results illustrated that size (i.e., book value of acquirer in billions of dollars), ratio of acquirer size to target size (sizerat) for acquirer being part of umbrella partnership of REIT, UPREIT (ACU), geographical diversification (GD), and for transaction being announced in the fourth quartile (CFOUR) are all statistically significant; coefficients of size and GD are negative while sizerat, ACU, and CFOUR coefficients are positive.

Campbell, Ghosh, and Sirmans (2005) explored on how governance influence value creation in REIT M&As over the period of 1995–2001. Campbell et al. (2005) argue that governance structures in REITs during 1990s were influenced by UPREIT. Other than improvement of governance structure due to establishment of UPREIT, UPREIT brought in convertibles that benefited REIT shareholders. Campbell et al. (2005, p. 225) stated that "we find that wealth effects from central managerial changes are positively related to the degree to which payment takes the form of convertible equity units of UPREIT subsidiaries, and the minimum lock-up period for those units prior to conversion." ARs were higher when target management were part of new REIT structure and lower when target management were not part of new REIT structure. Daniels and Phillips (2007) explored impact of financial advisors on REIT M&As over the period of 1981-2001. The main hypothesis in Daniels and Phillips was to find out if financial advisors bring any benefits in REIT M&As. The results indicated that a financial advisors especially ones with good monitoring skills reduces levels of information asymmetry. Moreover, the reduction of information asymmetry was found to have a positive impact on REIT values, stocks, options, regions, and divest of REITs.

Finally, after valuation and due diligence, acquiring firms have a choice of

financing prospective M&A deals through cash and/or stocks. M&A deals that involve undervalued firms tend to be financed through cash while M&A deals that are made up of firms which are overvalued tend to be stock financed, as Fuller et al. (2002) argue. Womack (2012) illustrated that the REIT industry is different from most industries in terms of M&A financing as most deals are financed through combination of stocks and cash. Ghosh, Petrova, and Xiao (2012) present evidence of excess use of cash holdings leading to value destruction in REIT corporate acquisitions. Fundamentally, one infer from prior studies such as Leland (2007) that systematic components that contribute to values of firms can be grouped as follows: beta (i.e., risk), insider shareholding, institutional holding, management style (self or not), board type (staggered or not) contribute to conflict of interest, return on equity (ROE), volatilities of acquirer and target respectively, growth (M&A era), ratings, dividend yield and leverage contribute to organic growth of firms, debt and equity forms funding type for financing growth, and REIT type including whether a listed fund is a REIT or not are due to the specialization of a firm.

III. MODELLING M&A OPTIONS

In pricing exchange options, firstly, this article presents cash-financed only options; secondly, the stocks-financed only options and finally, the article extended the Margrabe (1978) such that it is suitable for pricing exchange options financed through a combination of cash and stocks.

Cash-Financed Only Options

When M&A deals are financed through cash only, the B-S model is used to price exchange options rising from the right of target companies to sell their shares for a pre-defined sum of money. When two firms merge, the emerging option represents a put option that target firm obtains from the acquiring firm and the put option can be computed as follows:

$$p = Xe^{-rt}N(-d_2) - S_0N(-d_1), \tag{1}$$

with

$$d_1 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)\tau}{\sigma\sqrt{\tau}},\tag{2}$$

$$d_2 = d_1 - \sigma\sqrt{\tau} , \qquad (3)$$

where p is the put option, S_0 is the spot price (i.e., target price), X is the exercise price (i.e., the deal value per share which SNL Financial calculates as amount paid for target acquisition over shares used to calculate deal; those shares include ordinary shares and operating units outstanding), γ is the continuous risk-free interest rate, τ is tau which represents time to expiration (in this case time to expiration starts when the merger is announced until when the deal is closed), σ is the volatility of the stock, d_1 and d_2 are probabilities of being in-the-money position, and $N(d_1)$ and $N(d_2)$ are univariate cumulative normal density functions with upper integral limits d_1 and d_2 respectively.

Stocks-Financed Only Options

When mergers are only stock-financed the Margrabe (1978) (from here Margrabe) model is an appropriate model. The Margrabe model with no cost of carry is illustrated as follows:

$$C[S_1, S_2, \tau] = KS_1N(d_1) - S_2N(d_2),$$
 (4)

with

$$d_1 = \frac{\ln\left(\frac{KS_1}{S_2}\right) + \left(\frac{\sigma_p^2}{2}\right)\tau}{\sigma_p\sqrt{\tau}},\tag{5a}$$

$$d_2 = d_1 - \sigma_p \sqrt{\tau} , \qquad (5b)$$

$$\hat{\sigma}_p = \sqrt{\sigma_1 + \sigma_2 - 2\sigma_1\sigma_2\rho_{1,2}}, \qquad (6)$$

where c is the long call option, S_1 is the acquiring asset, S_2 is the target asset, σ_1 and σ_2 are volatilities of assets one and two respectively, γ is the continuous risk-free interest rate, $\hat{\sigma}_p$ is the ombined volatility of two assets, $\rho_{1,2}$ is the correlation coefficient between the two assets, d_1 and d_2 are probabilities of being in-themoney position, and $N(d_1)$ and $N(d_2)$ are univariate cumulative normal density functions with upper integral limits d_1 and d_2 respectively. During M&As, the acquiring firm sometime offers an exchange ratio fraction, K of its own shares in exchange of shares of the target company. The reason why S_1 is multiplied by the

exchange ratio because the SNL Financial defines the exchange ratio as "number of the common stocks of the buyer (i.e., acquiring firm) to be exchanged for common stocks of seller (i.e., target firm)." The estimated volatilities of S_1 and S_2 are from their historical prices as historical volatilities are model free. This implies that those historical volatilities are very good in predicting future volatilities as implied volatilities predict future volatilities well. The positive and negative sign before S_1 and S_2 illustrate that S_1 and S_2 sold and bought respectively. Any income generated by underlying assets is treated as dividends in order to avoid over estimation of options prices.

This article uses the Margrabe model with no cost of carry because of poor quality of the data used in this article. Issues leading to poor quality of data will be discussed under data section of this article.

Cash and Stocks Financed Options

Then, the Margarbe (1978) model is extends such that it suitable for pricing exchange options when financed through a combination cash and stocks. The main model assumption is that for stocks and cash financed M&A deals, M&A optionality is disentangled in combinational funding by assuming that cash and stocks are mutually exclusive (i.e., correlation is zero). In other words, the amount of stocks and cash injected in an M&A deal depends on how the target firm shareholders want to funded in terms funding types. The phenomenon can be traced back to Officer (2004) and Subramanian (2004).

$$C[(S_{spot} + S_{stocks}), S_2, \tau] = K(S_{spot} + S_{stocks})N(d_1) - S_2N(d_2), \tag{7}$$

with

$$d_1 = \frac{\ln\left(\frac{S_{spot} + KS_{stocks}}{S_2}\right) + \left(\frac{\sigma_p^2}{2}\right)\tau}{\sigma_p\sqrt{\tau}},$$
 (8)

$$d_2 = d_1 - \sigma_p \sqrt{\tau} , \qquad (9a)$$

$$\hat{\sigma}_{p_{spot,stocks}} = \sqrt{\sigma_1 + \sigma_2} , \qquad (9b)$$

$$\hat{\sigma}_{p1:2} = \sqrt{\sigma_1 + \sigma_2 - 2\sigma_1\sigma_2\rho_{12}}, \qquad (9c)$$

where S_{stocks} is the amount of stocks injected into the M&A deal over outstanding ordinary shares of the acquirer, S_{spot} is the price per share of the acquiring firm (i.e., the spot price of the acquirer at the time of the merger which is made up of cash injected in the merger over outstanding ordinary shares of the acquirer). That is, the S_{stocks} in Equation (8) is similar to the S_1 in Equation (4) and the S_{spot} is the extra parameter due to cash injection in the M&A deal. The volatility of S_1 and is S_2 illustrated by $\hat{\sigma}_{p_1;2}$ and $\hat{\sigma}_{p_{spot;stocks}}$ illustrates volatility of S_{stocks} and S_{spot} (i.e., volatility of S_1). The correlation coefficient between spot price and stocks amount; $\rho_{spot;stocks}$ is zero because positive correlation decreases options values while negative correlation increases options values. That is, cash and stocks financing in M&A deal are additive. The correlation coefficient of the price of the acquirer spot price (i.e., spot price at the time of the merger and stocks amount) and the price of the target firm, $\rho_{1,2}$ is taken into account. The rest of the variables are the same as in the non-altered Margarbe model.

IV. DATA

The total sample size is made of 178 M&As. Some are mergers between two REITs and others are mergers between a REIT and a real estate operating company (REOC), and the remaining between a REIT and a non-REIT firm (i.e., financial services and/or investment management, and conglomerates). The sample is taken from SNL Financial and some other economic and financial variables are obtained from Bloomberg and Thomson/DataStream. Out of 178 M&A deals, 121 (i.e., 67.98%) deals are public-to-public mergers and the remaining 57 (i.e., 32.02%) are public-to-private mergers. Since our analysis requires the availability of share prices for both target and acquiring firms, this article focuses on the former in our analysis and one also needs to reduce the sample by further 15 deals because the available data is incomplete. Given that preliminary data has short comings, this article does not present it but gives an overview of preliminary-both acquiring and target firms. The preliminary data on acquiring firms is as follows.

Most deals were in the shopping centres sector, followed by multi-family, then health care and the rest of other sectors. In terms of deal sizes, most valuable deals were in the diversified sector followed by shopping centres and offices, the health care and the rest of sectors. According to the REITWatch report as August 29, 2014, the industrial sector had the highest performance, followed by shopping centres and then rest of the sectors. In addition, the REITWatch report shows that in 2006, every sector's annual return excluding diversified and self-storage were more than 20% per annum. In 2008, all sectors excluding self-storage had negative annual returns-probably because the self-storage sector has defensive stock characteristics. If one adopts a principle similar to Bhagat et al. (1987), and Sorwar

and Sudarsanam (2010) using the differences between mean and median, spreads significantly different from zero are found in every group especially in the funding group. This evidence supports the fact assumption that funding group variables should contribute more to options values than other variable groups. And the preliminary data on target firms is as follows.

In the conflict of interest group, all variables are positively skewed except institutional shareholding (i.e., institut) and being self-managed (i.e., Msself). In other words, risk (i.e., beta), insider shareholding (i.e., insider) and staggered board or not (i.e., Sboard) should contribute more to options values than institut and Msself. In the growth group, all variables are positively skewed except REOC and dividend. All the specialization group variables are positively skewed. Therefore, specialization group variables should contribute significantly to values of options. In both acquiring and target firms, there were issues relating to poor quality of data.

From the entire sample of downloaded M&A deals, some issues of data quality are raised for some M&A deals which lack observations for all the required calculations in the two empirical hypotheses. Poor quality of data issues include: no dividends period or recorded dividends, missing data points in between first and last data points, no coupon rates recorded on debt, equity and debt not recorded, and data recorded over short periods (i.e., less than a year and therefore, one cannot estimate historical volatilities over required period). Although not in every case, SNL Financial removes the target firms from its database once they are taken over and it only lists the merged entity. This is part of data cleaning and storage process by SNL Financial. Hence, most data shortage is on the target firms. In certain cases, share price series of target firms stop way before the M&A announcement date. Another parameter which is important in calculating exchange options is the exchange ratio of each deal. Hence, one had to dismiss 10 M&A deals for which SNL Financial did not record exchange ratios. Some M&A exchange ratios were collected from the Thomson DataStream. On dividends, SNL Financial has dividends on 47 firms of the final sample and all annual dividends periods are shorter than 7 years, therefore dividend yields for 11 firms were obtained from Bloomberg terminal.

In total 72 M&A deals are left out from the final sample, which means the final sample is made up of 106 transactions. In the final sample, one also kept a very small number of deals where one of the two firms appeared already in another deal (i.e., it merged more than once during the 1994-2010 sample period). Our GARCH (1, 1) calculations illustrate that during the sample period, the U.S. REIT industry was in a bull market phase as spot volatilities converge to their long-term average volatilities from the top. Therefore, financing those REIT M&A deals was easier than in other more bullish periods as described in Timmons and Bygrave (1986). Table 1 exemplifies some appropriate M&A characteristics of our sample.

Table 1. Descriptive Statistics

Panel A: Acquiring Firms								
Effect	Variable	Mean	Median	Min	Max	Std. Dev.	Skewness	Kurtosis
Conflicts of interest	beta	0.62	0.59	0.16	0.91	0.18	-0.15	-0.33
	insider (%)	8.40	3.87	0.00	57.40	11.26	2.56	7.94
	instit (%)	92.97	97.18	39.57	110.58	92.97	7.8	60.92
	msself	0.93	1.00	0.00	1.00	0.25	-3.55	10.86
	sboard	0.19	0.00	0.00	1.00	0.39	1.63	89.0
Growth	ROE (%)	12.15	7.07	0.00	226.84	26.01	6.12	45.67
	dividend	1.00	1.00	0.00	11.00	1.20	4.75	36.19
	volatility	0.40	0.26	0.00	1.26	0.35	0.08	0.74
	audit fees (\$mn/p.a.)	14.36	14.24	0.91	29.00	3.06	-3.24	14.68
	growth	2001	2002	1994	2009	4.18	-0.20	-1.32
	rat_inv	0.64	1.00	0.00	1.00	0.48	-0.62	-1.66
Funding	tf_debt (\$mn)	1,175.47	525.9	0.00	13,276.20	2,116.26	4.30	21.02
	tf_FFOs (\$ mn)	1,957.14	596.4	4.93	24,472.70	4,217.69	4.30	19.27
	tf_cash (\$mn)	1,585.26	239.62	0.00	24,472.70	4,233.44	4.49	20.52
	tf_stock (\$ mn)	402.56	22.1	0.00	3,310.70	770.84	2.61	6.44
	tf_ps (\$ mn)	7.01	0.00	0.00	175.00	29.64	4.74	22.60
	tf_cou (\$ mn)	5.56	0.00	0.00	67.41	11.93	4.84	22.41
Specialization (i.e., sectors)	SC	0.07	0.00	0.00	1.00	0.23	5.38	40.30
	hui	0.05	0.00	0.00	1.00	0.20	5.24	29.92
	mf	0.07	0.00	0.00	1.00	0.20	7.39	71.40
	diversified	0.72	1.00	0.00	1.00	0.45	-0.99	-1.04
	fo	0.07	0.00	00.00	1.00	0.25	3.57	10.91

Ainosco Press

Table 1. Descriptive Statistics (continued)

į	TI TI	111113
E	2000	Targo
4	Ý	
	7270	Tall

arrangement of tarrange								
Effect	Variable	Mean	Median	Min	Max	Std Dev	Skewness	Kurtosis
Conflicts of interest	beta	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	insider (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	instit (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	msself	0.78	1.00	0.00	1.00	0.42	-1.36	-0.14
	sboard	0.51	1.00	0.00	1.00	0.51	-0.04	-2.09
Growth	ROE (%)	00.00	00.00	0.00	00.00	0.00	0.00	0.00
	dividend	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	volatility	0.43	0.19	0.00	1.34	0.46	0.07	0.49
	audit fees (\$mn/pa)	13.24	13.28	10.21	15.66	1.16	-2.85	7.56
	growth	2001	2002	1994	2009	4.18	-0.20	-1.32
	rat_inv	0.64	1.00	0.00	1.00	0.48	-0.62	-1.66
Specialization (i.e., sectors)	sc	0.11	0.00	0.00	1.00	0.27	4.11	21.32
	pui	0.04	0.00	0.00	1.00	0.19	5.39	30.92
	Jm	0.08	0.00	0.00	0.67	0.18	3.85	35.49
	diversified	0.84	1.00	0.00	1.00	0.39	-1.40	1.50
	Jo	0.15	0.00	0.00	1.00	0.36	1.99	2.01

investment rating) symbolize M&A period (i.e., year) and for investment grade respectively, and they applicable in a similar manner to acquiring and target firms, and growth is Beta is for the risk, insider is for insider ownership, ROE is return on equity, dividend is dividend paid, tf is for total funds, FFOs is funds from operations (i.e., internal funds), pf is for preference shares and cou is common operating units, msself is for self-managed, sboard is for staggered board, \$mn is for millions in U.S. dollars, growth and rat_inv (i.e., based on announcement year as opposed to completion one, msself, growth and all specializations variables are identified by dummies, so is for shopping centers and it includes sc, regional malls and outlet centres, Ind is for industrial and it includes ind and self-storage, mf is for multi-family and it includes mf, manufactured homes and residential homebuilders, and off is for offices. Source: This study.

In Table 1, from the conflict of interest group, beta (i.e., risk) and being selfmanaged (Msself) are negatively skewed while other parameters—i.e., insider shareholding (insider), institutional holdings (instit) and staggered board or not (Sboard)—are positively skewed and hence contribute more to options values. Moreover, positively skewed parameters from the conflict of interest group tend to have higher standard deviations. This is one of the reasons why insider, instit, and Sboard contribute more to options values. In the growth group, ROE, the dividend yield and volatility are positively skewed while auditing (audit) fees, growth period, and rating investment (rat_inv) are negatively skewed. The reason why dividend yield and volatility contribute more to options values is partly due to OPT. As far as ROE is concerned, if earnings are retained in business then that retained money can be used for expansion purposes. The reason why audit fees contribute less to options values is because audit fees represent cash outflows which minimise the money left in the business to be reinvested. Growth is during the period of a continuous and steady growth (i.e., 1990s) of REIT firms; therefore, any positively change had little impact on option values as the M&A activity was already high. As far as rat_inv is concerned, since properties are speculative investments by nature and take into account all parameters that drive property values; therefore, the rat_ inv does not change the real rating of properties. All the different types of financing are positively skewed; this implies that they contribute more to options values. This might be due to the fact that funding whether of debt or equity nature contributes positively to the value of firm. Gatchev, Spindt, and Tarhan (2009) share the same view on how funds contribute to values of companies, even if different types of funds to company values differently (e.g. POT).

From the specialization group, shopping centres (SC), industrial (Ind), multifamily (MF) and offices (Off) are positively skewed while diversified is negatively skewed. The reason why being a diversified contributes less to options values is because most of the U.S. REIT firms are specialised; moreover, Anderson, Benefield, and Zumpano (2009) illustrate that it is more advantageous to be a specialised REIT firm in the U.S. than to be a diversified firm. On the other hand, Anderson et al. find that diversification costs out way diversification benefits in the U.S. REIT industry. If one explore average group spreads, one notices that the spread for the conflict of interest is 6.71%, 49.75% for the growth group, and -0.40% for the specialization group. Similar spreads can be inferred from Bhagat et al. (1987) and Sorwar and Sudarsanam (2010). Positive spreads are desired as they illustrate amount of money that one can make by taking position in a certain market. The reason why the growth group reports the highest spread(s) may lie on the fact that variables include financial option parameters such as volatility and dividend yields. The average spread for the funding group is left out because

for the target firms, the funding values are missing (i.e., data provider does not have them). In recoding dates, SNL Financial provides M&A announcement and closing dates for each M&A deal with no extension or possible termination dates on all M&As; therefore, it is assumed that all options are of European nature. The announcement date is decided in two ways, SNL Financial either takes the earliest event date as the announcement date or where there is letter of intent (LOI) dated prior to the definitive agreement date, SNL Financial registers the LOI date as the announcement date. The closure date is estimated by SNL Financial based on interviews with respective companies involved in M&As and should the actual date be different, SNL Financial changes the date accordingly after the M&A completion (hence only the modified date is observed).

V. EMPIRICAL ANALYSIS

In presenting options values, this article separates cash financed deals from stocks financed ones. Furthermore, the study distinguishes between hot and cold M&A deals. Table 2 illustrates options values.

Table 2 illustrates that most M&As were financed through stocks (including stocks and cash) than cash and this is in line with Womack (2012) who finds that financing REIT mergers with completely or partly stocks as a common phenomenon. Some curves are positively skewed while a few are normally distributed, this expected as options payoffs are non-linear in shape. Peiró (1999) stated that marginal returns are higher when skewness is positive than negative. Cash financed options seem to be less skewed than stocks financed options and this is due the fact that the B-S options incorporates risk-free rates, which minimises mispricing of options values. Most REIT M&As took place in retail, multi-family and offices sectors, and one of the reasons is that those sectors performed better than other REIT sectors. Hotels make less than 10% of the U.S. REIT industry and their share prices performed poorly at least in the last ten years. Another reason that might have led to the poor performance of hotels is that their lease and income structures tend to be risky. It seems that the mergers in the hotel sector were largely for strategic reasons. Harrison, Panasian, and Seiler (2011) stated that hotels offer organic growth as they present a relatively low debt ratio.

Lastly, when one compares cold and hots sectors, most deals took place during the cold period. This is due to fact that during hot periods markets are very noisy and some investors do get overcompensated during the hot periods. Therefore, it is wiser to wait for the cold periods so that valuations of firms' valuations represent fair values. Çolak, Yung, and Wang (2008) stated that although one can earn good returns during hot periods; however, hot periods have their own challenges that

	_	
•	-2010 l'eriod	
(_	
	2	
Ž	5	
è	7	
	‡	
,	~	
7	₹`	
`		
۲	_	
	during	
	/alues	
۲		
•	ptions	
ĺ	~	
(٠.	
(N	
	α۵	
_	lable	
	o	
r	ಡ	
ļ		

		rance of the state	our cure	- //- G	1010			
Model Type	Mean	Median	Min	Max	Std Dev	ν̈́	Skewness	Kurtosis
Model type								
B-S model	3.92	2.17	0.26	29.02	5.22	49	3.26	12.93
Margrabe model	3.24	1.12	0.00	33.92	6.23	57	3.40	12.62
M&A type								
REIT & REIT	3.55	1.76	0.00	18.19	5.83	99	3.28	12.05
REIT & REOC	3.71	1.77	0.88	33.92	6.04	25	3.14	10.92
REOC & REOC	3.79	1.80	0.26	29.02	6.47	_	3.31	11.53
NONRE & NONRE	3.61	1.77	0.65	12.19	5.92	8	3.34	12.39
Hot sectors								
Diversified	0.00	0.00	0.00	0.00	0.00	2	0.00	0.00
Health care/hotel	0.85	0.81	0.00	1.72	0.86	3	0.16	0.00
Industrial/self-storage	3.65	0.93	0.02	18.19	7.17	9	2.38	5.72
Multi-family	1.65	1.08	0.00	98.9	1.96	18	1.49	1.76
Оffice	1.98	1.98	0.83	3.13	1.62	8	0.00	0.00
Shopping centres	3.27	0.39	0.00	17.09	6.8	9	2.39	5.78
Cold sectors								
Conglomerate	1.77	1.02	0.65	3.64	1.63	8	1.63	0.00
Correctional services	2.77	2.77	2.77	2.77	0.00	1	0.00	0.00
Diversified	1.65	1.65	1.51	1.80	0.20	2	0.00	0.00
Financial services	2.32	2.32	0.98	3.66	1.89	2	0.00	0.00
Health care/hotel	4.19	2.43	0.00	24.82	6.32	15	2.89	8.96
Industrial/self-storage	2.34	2.03	0.54	4.77	1.84	4	0.80	-0.25
metastilar/sem-storage	1.7.1	0.1	10.0	7:./	101	+		- 1

_	
•	(continued
_	_
-	'er100
_	_
ς	9
7	=
2	$\stackrel{\sim}{\sim}$
'	7
`	4
(3
(2
Ŧ	$\overline{}$
	þ.
	ng S
•	ring
•	uring
	during
	s during
	es during
	nes during
-	alues during
•	Values during
	s Values during
•	ns Values during
	ons Values during
	tions Values during
	ptions Values during
	Uptions Values during
	. Options Values during
	Uptions Values during
•	Uptions \
•	Uptions \
•	Uptions \
•	Table 2. Options Values during

		-	0		,	,		
Model Type	Mean	Median	Min	Max	Std Dev	No	Skewness	Kurtosis
Multi-family	3.51	4.04	0.00	8.21	3.05	11	0.25	-1.30
Оffice	4.30	1.78	0.00	29.02	8.10	12	3.04	9.65
Power generation	33.92	33.92	33.92	33.92	0.00	1	0.00	0.00
Shopping centres	3.19	1.44	0.00	15.52	4.66	16	1.88	2.77
Wireless telecom	7.80	7.80	7.80	7.80	0.00	-	0.00	0.00

Source: This study.

similarities. Each option is either B-S or Margrabe option not both. N is sample size for that particular variable, REIT is for real estate investment trusts, REOC is for real estate operating company, and nonre if for non-real estate company although nonre do have some investments in real estate sectors. Sectors are grouped per acquiring and target firms sector specialization and in case where acquiring and target firms are from different sectors, the acquiring firm's sector is taken as the sectors for each M&A deal. Definition of sectors and shopping centres, 2 target firms are not shopping centres firms, from multi-family, 2 target firms are not multi-family sectors, from industrial/self-storage, 2 target firms Health care and hotel are put together because they are within hospitality industry, industrial and self-storage are put together because they offer similar services, multi-family, and residential homes are grouped together as they offer similar services, outlet-centres and regional malls with shopping centres are put together because of their hot and cold is adopted from Çolak et al. (2008), basically, hot is when event reached its peaks or higher levels (i.e., 1990s) and cold (i.e., 2000s) is the opposite of hot. From hot are not industrial/self-storage firms, from offices, 1 target firm is not within office sector, and from diversified, 2 target firms are non-diversified firms. From cold sectors, within office sector, 7 target firms are not office firms, from shopping centres, 2 target firms are non-shopping centres firms, from multi-family, 4 target firms are not multi-family firms, from healthcare/hotel, 7 target firms are not in health care/hotel sectors, from industrial/self-storage, 1 target firm is not from industrial/self-storage sector, and from diversified, 1 target firm is non-diversified firm. erode returns if risks are not properly mitigated during those periods. Given that clustering tend to occur in multiple options, this article verifies the independence of the options. Since options are non-linearly distributed, a chi-square test for two scaling constants is used as linearity is not a requirement for chi-square tests given that its distributions are truncated similarly to options values. Table 3 illustrates independence test results.

The null hypotheses are rejected at significantly high *p*-values; this implies that means of two groups are statistically different from each other. Leverage for different quartiles should be different as the more leverage a REIT firm has on its balance sheet, the higher are expansion chances without major difficulty. Allen, Madura, and Springer (2000) stated that coefficients of leverage are positive and statistically significant because leverage is advantageous to REIT firms during expansion periods. Investment and speculative grades are different as most investors prefer investing in investment grade than speculative one. The reason why different quartiles of acquirer institutional holdings are different might be due to the fact

Table 3. Statistically Significance Difference of Unequal Means

Variable	Difference	Chi-Stat	<i>p</i> -value	Decision
Leverage	4th vs. 1st quartile	22.02***	0.00	Reject H ₀
Rating	Investment vs. speculative grade	38.11***	0.00	Reject H ₀
Acquirer's institutional holding	4th vs. 1st quartile	15.07***	0.00	Reject H ₀
M&A	Cash vs. non-cash financed	50.98***	0.00	Reject H ₀
M&A	Stocks vs. non-stocks financed	50.98***	0.00	Reject H ₀
FFOs	Small vs. medium	42.37***	0.00	Reject H ₀
FFOs	Medium vs. large	26.51***	0.00	Reject H ₀
Acquirer audit fees	4th vs. 1st quartile	19.00***	0.00	Reject H ₀
REITs	Specialised vs. non-specialised	53.38***	0.00	Reject H ₀
Debt	Small vs. medium	42.69***	0.00	Reject H ₀
Debt	Small vs. large	42.26***	0.00	Reject H ₀
Debt	Medium vs. large	25.16***	0.00	Reject H ₀

Source: This study.

Above shows the Chi-square independence test. The critical chi-stat is 3.84 for all variables tested, acquirer audit fees, and acquirer institutional holding. We compared 4th and 1st quartiles, as 2nd and 3rd quartiles might have similar traits because of their proximity, Therefore, making them statistically insignificant. H₀ is the null hypothesis; cash financed means only financed through cash; non-cash financed means financed through stocks or combination of stocks and cash; stock financed means only financed through stocks; non-stock financed means financed through cash only. Amount sizes definitions were adopted from Mueller (1998): \$0–500 million are classified as small-caps; \$501–1,000 million are mid-caps; \$1,001–4,000 million are large-caps; above \$4,000 million are mega-caps. Some parameters were left of out because their sample was small, i.e., less than 10.

^{***} denotes alphas at 1% level, respectively.

that REITs are formed by investors who have a common goal. Therefore, high institutional holdings eliminate unnecessary conflicts of interest in managing REIT firms.

Cash and non-cash (i.e., stocks) deals are different because the latter are normally overvalued while cash (i.e., non-stocks) deals are normally undervalued. Daniels and Phillips (2007) echoed similar view. The availability of either internal (i.e., FFOs) or external funds (i.e., debt) allows acquirer to source funds during growth phases, although preference would be given to FFOs as per POT and amount of debt should ideally not matter in good real estate markets. Finally, on audit fees, Bairagi and Dimovski (2012) found that firms should be concerned with net proceeds in initial public offering (IPOs) as the amount that matters in REIT firms is only net proceeds when funding growth of firms. In the U.S. it seems that it is easier for specialised REITs to expand than diversified REIT firms. Campa and Hernando (2004) reported that several combinations of variables as well as univariate regression results show the importance of each single factor in explaining growth option values. This article derives a non-linear model to map various parameters against options values as below. An exponential equation can be represented as follows:

$$Y_t = AX_{1t}^{\beta_1} X_{2t}^{\beta_2} e^{\mu t}. \tag{10}$$

One advantage of using an exponential model is that it can be transformed into a linear equation using logarithm functions. On the other hand, independent variables in linear regressions are elastic in relation to the dependent variable in linear models. Logarithms are taken on both sides and Equation (10) is re-arranged:

$$\ln(Y_t) = \ln(A) + \beta_1 \ln(X_{1t}) + \beta_t \ln(X_{2t}) + \mu_t, \tag{11}$$

where A is a constant (i.e., y intercept), β_1 and β_2 are estimated parameters, X_{1t} and X_{2t} are independent variables, μ_t is the mean, and Y_t is dependent variable. Now, one assumes that $\ln(A) = \alpha$, $\ln(Y_t) = Y_t$, $\ln(X_{1t}) = X_{1t}$, and $\ln(X_{2t}) = X_{2t}$, then:

$$Y_t = \alpha + \beta_1 X_{1t} + \beta_2 X_{2t} + \mu_t. \tag{12}$$

Given that Y_p , options values are non-linear, it is decided to keep dependent variable as $ln(Y_t)$ in order to maintain non-linearity approximation of options values. Therefore, Equation (12) becomes:

$$\ln(Y_t) = \alpha + \beta_1 X_{1t} + \beta_2 X_{2t} + \mu_t. \tag{13}$$

After all the transformations, one can see that Equation (13) is a log-linear model simultaneously accounts for linear and non-linear distributions. More, Equation (13) is used to test different effects and models heterogeneity controlled. Models for conflict of interest are called conflicts, models for organic growth effect are called growth, models for funding effect are called funding, models for specialization effect are called specialization, and models for combined effects are called amalgamated. For conflict of interest, target firms parameters were left out as there is limited data on those parameters. Table 4 illustrates results for conflicts.

In columns 2 and 3 of Table 4, insider ownership and institutional holdings are positive and statistically significant. The positive insider ownership coefficient can be attributed to the fact that insiders have more information about a REIT firm than outsiders. Moreover, insiders will do everything in their power in order to be overcompensated in M&A deals. Capozza and Sequin (2003) echoed positive impact of insider ownership in REIT firms. The positive coefficient of institutional holding has to do with the POT as when firms expand, they first look at amount of cash available as it is cheap considering than debt as has benefit of being taxdeductible in the case of a REIT firm. In the context of REITs, money first comes from insiders (i.e., people owning and managing a REIT firm); thereafter, retail investors; lastly, institutional investors. The latter statement also explains why the coefficient of institutional holding is small. In conflict 5, staggered board is negative and statistically significant because board members serve on firms boards for a specific period; therefore, there is no incentive for sitting board members to contribute to a REIT firm beyond their tenure. The statistical significance of insider ownership and institutional holdings in conflicts 6 and 7 is for the same reasons mentioned earlier. Msself and Sboard are correlated; therefore, in order disentangle the correlation between those two variables, there are two conflicts, i.e., 6 and 7. The F-statistics illustrate that there are structural breaks in conflicts 2 and 5; however, one cannot do anything about them given that the analysis is based on cross sectional data. The White test illustrates that there is white noise in conflict 5. Table 5 illustrated funding.

From all the funding variables, only the FFOs are statistically significant. The positive coefficient of the FFOs is consistent with the notion that the FFOs are part of expansion funds available and the more funds a firm has, the easier is to expand. On the other hand, the statistically significance and of FFOs supports the POT in the sense that during expansion, firms tend to use internal funds before looking for alternatives. Although debt and leverage are statistically insignificant, their coefficients are consistent with prior empirical studies that illustrate that debt

Interest	
of	
nflicts	
Ŝ	
Determinants:	
Value	
\geq	
ption	
0	
Table 4.	

		Tanna 11 Al	מ אשות ווחול	table is option talac Determinants, commens of interest	Commen of t	16151		
Effect	Variable	C1	C2	C3	C4	C5	9O	C7
Conflict of Interest	Constant	1.5905*** (0.0000)	0.9070***	1.0042*** (0.0000)	0.8614*** (0.0000)	1.1391*** (0.0000)	0.5487 (0.2354)	1.1004** (0.0273)
	ac_beta	-0.8474 (0.1198)					-0.1531 (0.8215)	-0.2719 (0.6933)
	ac_insider		0.0179^* (0.0646)				0.0221^{**} (0.0424)	0.0198^* (0.0779)
	ac_instit			0.0001*** (0.0000)			0.0001^{***} (0.0009)	0.0001^{***} (0.0049)
	ac_msself				0.1330 (0.4195)		0.4022^{***} (0.0090)	
	ac_sboard					-0.4260^{**} (0.0223)		-0.4370* (0.0736)
Adjusted R^2		1.81%	4.13%	1.24%	-1.32%	2.61%	5.58%	6.91%
White Test		0.1569 (0.6920)	1.2007 (0.2732)	0.3433 (0.5579)	0.1018 (0.7507)	3.2111^* (0.0731)	4.1578 (0.9651)	1.7298 (0.7853)
Durbin-Watson		1.54	1.52	1.59	2.08	1.69	1.68	1.75
F-Stat		2.3256 (0.1317)	4.3164^{**} (0.0411)	1.7180 (0.1953)	1.1434 (0.2849)	3.0076* (0.0870)	1.8267 (0.1377)	2.0022 (0.1085)
Akaike IC		2.60	2.52	2.53	2.44	2.54	2.56	2.56
Schwartz IC		2.60	2.58	2.61	2.51	2.61	2.73	2.75
Hannan-Quinn IC		2.57	2.55	2.56	2.47	2.57	2.63	2.63

Source: This study.

Each model maps logarithm of option price against independent variable(s). For each model, the first number is the co-efficient of independent variable followed by p-value. ac is for amsself and ac_sboard. As ac_msself and ac_sboard are correlated; therefore, we decided to have conflicts 6 and 7 so that ac_msself and ac_sboard are not in the same model. White test is for hereroscedasticity and durbin-watson for autocorrelation. For White test, the first numbers is the co-efficient followed by p-value. Akaike, Achwarz, and Hannan-Quinn criteria acquiring firm, beta is the risk, instit is for institutional holding, msself is for self-managed, sboard is for staggered board, and insider is for insider shareholding. Dummies identify ac_ compares models in relative terms. The C in the first row of the Table 4 stands for conflict of interest. ***, **, and * denote alphas at 19%, 5%, and 10%, respectively.

increases values of firms. The small coefficient and statistically insignificance of debt has to do with the fact that when firms take on debt especially large amounts, financiers issue stringent conditions on debt issuance. That is, those conditions minimises the impact of debt on options values. Parallel to exploring fund effect, the second hypothesis tested whether the way the M&A deal is financed (i.e., cash or stocks financed) matters. The results produced -0.1793 with a *p*-value of 0.2614. Thus, financing method type does not have any effect on options values. This could be due to the fact that most M&A deals were executed during the bull phase; therefore, it easier to finance M&A deals during the bull market phase. The *F*-statistics illustrate that there are structural breaks in F3, F4, and F5; however, one

Table 5. Option Value Determinants: Funding

Effect	Variable	F1	F2	F3	F4	F5
Funding	Constant	1.0618** (0.0297)	0.9042*** (0.0000)	0.1206 (0.7272)	0.1272 (0.7140)	-0.0899 (0.8052)
	Debt	0.0071 (0.9898)			0.0238 (0.8245)	
	Leverage		0.3899 (0.3954)			0.4602 (0.2424)
	FFOs			0.1506*** (0.0078)	0.1456** (0.0178)	0.1534*** (0.0062)
Adjusted R ²	!	-1.02%	-0.35%	6.46%	5.55%	6.44%
White test		4.0203** (0.0450)	1.3280 (0.2492)	1.1558 (0.2823)	5.9624 (0.3099)	4.8502 (0.4344)
Durbin-Wa	ntson	1.85	1.83	1.86	1.87	1.85
F-Stat		0.0003 (0.9857)	0.6537 (0.4207)	7.8423*** (0.0001)	3.9080** (0.0233)	4.4072** (0.0147)
Akaike IC		2.54	2.53	2.46	2.48	2.47
Schwartz IC	2	2.59	2.58	2.51	2.56	2.55
Hannan–Q	uinn IC	2.56	2.55	2.48	2.51	2.50

Source: This study.

Each model maps logarithm of option price against independent variable(s). For each model, the first number is the co-efficient of independent variable followed by *p*-value. ac is for acquiring firm, debt is illustrated in three ways, first, debt is a sum of stocks, cash, preference shares, and common operating units all over total funds, and that ratio is subtracted from one, FFOs are funds from operations (i.e., internal funds in this case). The reason why debt is defined the way is that its results are consistent with prior empirical studies on debt's impact on values of firms. When we use other debt definitions, actual debt and debt as proportion of total funds, results are inconsistent with debt's impact on values of firms. White test is for heteroscedasticity and Durbin–Watson for autocorrelation. For White test, the first numbers are the co-efficiency followed by *p*-value. Akaike, Schwarz, and Hannan–Quinn criteria compares models in relative terms. We tested whether options values if they financed through stocks and/or combination of cash, or cash only matters, the results had a negative co-efficiency which is -0.1793 with *p*-value at 0.2614. The F in the first row of the Table 5 stands for funding type.

^{***} and ** denote alphas at 1% and 5%, respectively

cannot do anything about them given that the analysis is based on cross sectional data. Table 6 illustrates growth effects on options values:

In Table 6, the volatility is statistically significant with a positive coefficient. The reason why volatility is positive it is because volatility represents risk and investors want to be compensated for investing in risky investments. Amenc, Goltz, and Lodh (2012) found similar results on returns in relation to risks. On the other hand, the impact of acquirer volatility on options is consistent with the OPT. The reason why growth does not have an impact on options is that during the growth phase, investors tend to invest directly in underlying assets, thereby leading to fewer investments in options. He et al. (2010) illustrated that growth stocks react positive to new information (especially when the information positive) within trading environment, especially traders. Volatilities of target firms were left out as there is limited data on them. Dividends are left out because they are highly correlated with volatilities and audit fess of acquiring firms. The F-statistics illustrate that there are structural breaks in growth 3 and 4; however, there is nothing one can do about it given that this analysis is based on cross sectional data. The last independent category that is examined is specialization. For the specialization categories, there is dummy 1 when there is that specific sector or fund type and 0 otherwise. For specialization analysis, single-tenants, hotels and health care REITs are excluded because their inclusion causes multicollinearity. On the other hand, some acquiring and target REIT firms are correlated; therefore, most on the analysis for the specialization category is on target firms. This is due to the fact that most of M&A intensity is mainly target firms. Parallel to testing for specialization effect, this hypothesis tested whether most M&A options are within sectors or not. The within sectors coefficient for the latter statement is -0.0058 with a p-value of 0.0005. Thus, options values which are within sectors decrease overall value firms. It could due to the fact that most of the U.S. REITs are specialised. Outside sectors have limited benefits as it costly to be a diversified REIT firm in the U.S. Table 7 illustrates results of specialization.

For the acquirers, diversified and industrial sectors are statistically significant with negative coefficients. This is due to the fact that being diversified is the best case scenario in terms of specialization while industrial sector is expensive one. Anderson et al. (2009) stated that in the U.S. most REITs are specialised as expertise within sectors may lead to a more proficient management and reduction of costs. On the industrial sector, it provides specialised services and finances its operations with most of its retained earnings. Gibson and Lizieri (1999) stated that industrial REIT leases are rigid given that they are suitable for long-term horizons. For the target firms, coefficients of diversified and multi-family are positive and negative respectively, and statistically significant. The diversification issue is relevant

Table 6. Option Value Determinants: Growth

		Table	table of prior tarte permissions growing	Communication.	GIOW CII		
Effect	Variable	G1	G2	G3	G4	G5	95
Growth	Constant	0.6805**	0.9975***	0.9971***	1.1744*** (0.0000)	1.1453*** (0.0000)	0.8273 (0.1465)
	ac_audit_f	0.0253 (0.2689)					0.0268 (0.4526)
	ac_ROE		0.6850 (0.2336)				0.0268 (0.4526)
	ac_volp			0.0017^{***} (0.0012)			0.0021^{**} (0.0348)
	growth				-0.2976 (0.1016)		-0.2677 (0.2645)
	rat_inv					-0.1291 (0.5344)	-0.2339 (0.3217)
Adjusted R^2		-0.75%	0.62%	2.19%	1.86%	-0.89%	2.44%
White test		0.7671 (0.3811)	0.0001 (0.9908)	0.9584 (0.3276)	0.2872 (0.5920)	0.8965 (0.3437)	2.5574 (0.7678)
Durbin-Watson		1.64	1.89	1.87	1.96	1.38	1.64
F-Stat		0.4419 (0.5083)	1.6220 (0.2058)	2.2132^* (0.0761)	2.8720^* (0.0933)	0.3558 (0.5527)	1.4637 (0.2152)
Akaike IC		2.56	2.52	2.51	2.51	2.65	2.67
Schwartz IC		2.62	2.57	2.56	2.56	2.71	2.87
Hannan–Quinn IC		2.59	2.54	2.53	2.53	2.67	2.64

Source: This study.

Each model maps logarithm of option price against independent variable(s), for each model, the first number is the co-efficient of independent variable followed by p-value, ac and ta are for acquiring and target firms respectively, growth is during the 1990s when there manathon growth of REITs, audit_f is for auditing fees, rat_inv is for investment grade rating and it is best case, and out of 106 M&A deals, 49 are rated as investment, 27 speculative and 30 have no ratings. We didn't include speculative grade which is the opposite of investment grade. volp is volatility for a given asset. White test is for heteroscedasticity and Durbin–Watson for autocorrelation. For White test, the first numbers are the co-efficient followed by p-value. Akaike, Schwarz, and Hannan–Quinn criteria compares models in relative terms. The G in the first row of the Table 6 stands for growth. "", ", and " denote alphas at 1%, 5%, and 10%, respectively.

	Specialization
	Determinants:
	value L
۲	
•	Option

				7			
Effect	Variable	S1	S2	S3	84	\$5	98
Specialization	Constant	0.9347*** (0.0000)	1.3531*** (0.0000)	1.0635^{***} (0.0000)	0.6933^{***} (0.0000)	0.7133^{***} (0.0000)	0.7076*** (0.0000)
	ac_REOC	0.3851* (0.0907)					
	ac_nonre	0.2507 (0.2353)					
	ac_div		-0.3477* (0.0603)				
	ac_ind		-0.6080*** (0.0051)				
	ac_mf		-0.1837 (0.1689)				
	ac_sc		0.1671 (0.4711)				0.1287 (0.7972)
	ac_off		-0.1693 (0.5335)				
	ta_REOC			-0.2759 (0.3545)		-0.2012 (0.5501)	-0.1889 (0.5766)
	ta_nonre			0.1629 (0.6069)			0.0589 (0.8630)
	ta_div				0.3483** (0.0358)	0.3444** (0.0402)	0.3389^* (0.0524)
	ta_ind				-0.2568 (0.2350)	-0.2744 (0.2147)	-0.2775 (0.2053)
	ta_mf				-0.2891** (0.0178)	-0.3062** (0.0175)	-0.2922** (0.0216)

(continued)	
pecialization	
Determinants: S	
Value I	
Option	
Table 7. C	

		I		(,			
Effect	Variable	S1	S2	S3	S4	S5	98
	ta_sc				0.2722 (0.2540)	0.2542 (0.2959)	0.1384 (0.7938)
	ta_off				0.3633 (0.1591)	0.3454 (0.1878)	0.3499 (0.1909)
Adjusted R ²		4.94%	2.61%	1.10%	1.73%	0.95%	-1.06%
White test		1.0058 (0.6048)	3.8825 (0.5664)	1.1773 (0.5551)	4.4987 (0.4801)	4.6684 (0.5870)	4.8616 (0.6768)
Durbin-Watson		2.14	1.87	1.85	1.90	1.90	1.91
F-Stat		3.4182** (0.0370)	1.5310 (0.1876)	0.4611 (0.6320)	1.3489 (0.2508)	1.1584 (0.3354)	0.8698 (0.5450)
Akaike IC		2.51	2.54	2.55	2.55	5.56	2.61
Schwartz IC		2.59	2.70	2.63	2.71	2.75	2.84
Hannan-Quinn IC	IC	2.54	2.60	2.58	2.61	2.64	2.70

Source: This study.

autocorrelation. For White test, the first numbers are the co-efficient followed by p-value. Akaike, Schwarz, and Hannan-Quinn criteria compares models in relative terms. Out of 106 M&A deals, 66 are within sectors and 40 outside sectors, and we tested whether options values that are within sectors matter or not. Results illustrated a co-efficiency of Each model maps logarithm of option price against independent variable(s). For each model, the first number is the co-efficient of independent variable followed by p-value. is for industrial and includes industrial and self-storage sectors, div is for diversified, mf is multi-family and includes multifamily, residential homebuilder, and manufactured home. Given some variables such as REITs sectors and traits are identified by dummies, when some groups were put together in one model, econometrical the models not working as some of those parameters are explained by combination of some other parameters, i.e., multicollinearity. White test is for heteroscedasticity and Durbin–Watson is for ac and ta are for acquiring and target firms respectively, SC is for shopping centers and includes shopping centers, regional malls and outlet centers sectors, off is for office, ind -0.0058 with a p-value of 0.0005. The S in the first row of the table 7 stands for specialisation. ***, **, and * denote alphas at 1%, 5%, and 10%, respectively.

because target firms are likely to be overcompensated in mergers as it is costly to be diversified. The reason for negative and statistically significant multi-family coefficient might be due to the fact that multi-family sector has the highest cost-toincome ratio. On the other hand, Harrison et al. (2011) stated that leases of multifamily sectors are risky, and if the risks are not properly mitigated, one stands a chance of losing income of leases of multi-family sector. The F-statistics illustrate that specialization 1 has structural breaks; however, there is nothing one can do about it given that this analysis is based on cross sectional data. Table 8 reports three versions full models when the four aggregated factors driving M&A options are put together.

Table 8. Option Value Determinants: All Factors

Effect	Variable	A1	A2	A3
Conflict of interest	constant	-0.4383 (0.3952)	-0.6920 (0.7202)	-0.57222 (0.4518)
	ac_insider	0.0273** (0.0145)	0.0243* (0.0594)	0.0298* (0.0861)
	ac_instit	0.0002*** (0.0000)	0.0001*** (0.0000)	0.0002** (0.0281)
	ac_sboard	-0.4155* (0.0519)	-0.4254** (0.0479)	
Funding	debt	0.0065 (0.9629)	0.0149 (0.7785)	0.0046 (0.9514)
	FFOs	0.2145** (0.0203)	0.1978* (0.0725)	0.1856* (0.0792)
Growth	growth		-0.1660 (0.5478)	-0.0016 (0.9959)
	ac_audit_f		0.0331 (0.7966)	
	ac_volp			0.0019** (0.0018)
	rat_spec			0.0089 (0.9748)
Specialization	ac_secsc			0.2579 (0.5727)
	ac_nonre			0.2534 (0.5967)
	ta_nonre			0.2680 (0.6202)
	ta_secoff			0.1382 (0.7034)

Effect	Variable	A1	A2	A3
Adjusted R ²		18.20%	15.70%	22.03%
White test		18.4416 (0.4931)	33.0444 (0.4651)	11.2588 (0.4218)
Durbin-Watson		1.52	1.54	1.49
F-Stat		3.4033** (0.0102)	2.4366** (0.0324)	3.3103** (0.0264)
Akaike IC		2.45	2.51	2.52
Schwartz IC		2.67	2.80	2.97
Hannan–Quinn IC		2.54	2.62	2.70

Table 8. Option Value Determinants: All Factors (continued)

Source: This study.

Each model maps logarithm of option price against independent variable(s). For each model, the first number is the co-efficiency of independent variable followed by p-value. ac and ta are for acquiring and target firms, respectively, beta is the risk, instit is for institutional holding, sboard is for staggered board, insider is for insider shareholding, FFOs are funds from operations (i.e., internal funds in this case). Debt is calculating as sum of stocks, cash, preference shares, and common operating units all over total funds, and that ratio is subtracted from one. Growth is during the 1990s when there was marathon growth of REITs, audit_f is for auditing fees, volp is volatility for a given asset, rat_spec is speculative grade rating, and it is made up of the following ratings, BB+, BB, B+ and B. This article did not include investment grade, as it is the opposite speculative grade. SC is for shopping centers and includes shopping centers, regional malls, and outlet centers sectors, nonre is for non-real estate firm, and off is for office. Given some variables such as REITs sectors and traits are identified by dummies, when some groups were put together in one model, econometrical the models not working as some of those parameters are explained by combination of some other parameters, i.e., multicollinearity. White test is for heteroscedasticity and Durbin -Watson for autocorrelation. For White test, the first numbers is the co-efficiency followed by p-value. When conflict and founding 4 are put together, ac_beta and debt change to opposite signs from their initial signs in their respective groups due to multicollinearity, therefore, in combine 1 ac_beta and debt are excluded. When conflict 6, funding 4 and growth 6 are combined, debt and volp maintain their respective signs but change their statistical significance levels. Initial signs before ac_beta and audit_f coefficiency change, in addition, ac_beta is highly correlated to ac_instit, ac_insider, ac_audit_f (audit fees), and growth while ac_audit_f is highly correlated to ac_beta and growth. rat_spec and ac_volp are highly correlated with funding variables; therefore, ac_beta, ac_ ROE, ac_volp, and rat_spec are left out in combine 2. When conflict 6, funding 4, growth 6 and specialization 7 are combined, the following parameters change their original signs. ac_beta, ac_audit_f, ac_secsc (SC is for shopping centers), and ta_secind (ind is for industrial), and the following parameters change their original statistical significance, ac_sboard (staggered board), debt, ac_volp, ta_secdiv (div is for diversified sector), and ta_secsc. Therefore, parameters that are inconsistent with their original results were left out. Moreover, excluded variables (i.e., ac_sboard and ac_audit_f in combine 3) were highly correlated with other variables. The following combinations: conflict 6 and growth 6; conflict 6 and specialisation 7; conflict 6, funding 4 and specialisation 7; stated combinations yielded mixed-bag type of results. Akaike, Schwarz, and Hannan -Quinn show that models improve in relative terms. F-stats illustrate that combine 1, 2 and 3 do not fit well together. This might be due to grouping of limited data of different systematic components. The A in the first row of the Table 7 stands for amalgamated.

^{***, **,} and * denote alphas at 1%, 5%, and 10%, respectively.

All combine equations are consistent and show that the cross sectional explanatory power ranges between 15.70% and 22.03%. Combine 1 includes conflicts of interest and funding variables, combine 2 includes conflicts of interest, funding and growth variables, and combine 3 includes conflicts of interest, funding, growth, and specialization variables. The positive and negative coefficients and statistical significance as for the same reasons mentioned earlier when specific effects where explored. When conflict 6 and funding 4 are put together, ac_beta and debt change to opposite signs from their initial signs in their respective groups due to multicollinearity; therefore, in combine 1, ac_beta and debt are excluded. When conflict 6, funding 4, and growth 6 are combined, debt and volp maintain their respective signs but change their statistical significance while ac_beta and audit_f (audit fees) change their initial signs before their coefficients. In addition, ac_beta is highly correlated to ac_instit, ac_instit, ac_audit_f and growth while ac_ audit_f is highly correlated with ac_beta. Growth, rat_spec and ac_volp (acquirer volatility) are highly correlated with funding variables; therefore, ac_beta, ac_ROE, ac_volp, and rat_spec in combine 2 are left out.

When conflict 6, funding 4, growth 6, and specialization 7 are combined, the following parameters change their original signs: ac_beta, ac_audit_f, ac_secsc (SC is for shopping centres), and ta_secind (Secind is for industrial sector). The following parameters change their original statistical significance levels: ac_sboard (staggered board), debt, ac_volp, ta_secdiv (div is for diversified) and ta_secsc. Therefore, parameters that are inconsistent with their original results are left out. Moreover, excluded variables (i.e., ac_sboard and ac_audit_f in combine 3) were highly correlated with other variables. The combinations of conflict 6 and growth 6, conflict 6, and specialization 7, and conflict 6, funding 4, and specialization 7 yield mixed-bag results. The F-statistics show structural breaks in combine 1, 2, and 3; however, there is nothing one can do given that the analyses are based on cross sectional data. Growth and specialization effects in combine models seem to affect options values less than the conflicts of interest and funding effects.

VI. CONCLUSION

Firstly, when one compares the full sample, only cash-financed merger generated 9.4% average returns while deals financed through a combination of cash and stocks generate 10% average loss. Secondly, due to the emerging exchange options, liquidity in the REIT industry increases and more information spillovers to stakeholders in the REIT industry. Furthermore, it is illustrated that some REIT characteristics contribute to options values during mergers. Fourth, the overall results are in line with the previous studies that analysed abnormal returns, which are not exclusive to studies on the REIT industry. On the other hand, the impact of variables on emerging exchange options is consistent with POT and OPT. Fifth, despite the fact that some models have negative adjusted R^2 , the adjusted R^2 for the combined models show a significant improvement as models are rolled over. Hartzell et al. (2005) stated that low adjusted R^2 are common in the real estate industry because of its nature.

The implications of this study are important. Firstly, when REIT firms merge, stakeholders will have better insights in REIT mergers if they price those M&A deals using option pricing techniques. Therefore, option pricing techniques illustrated more insights than traditional valuation techniques such as the DCFs. Secondly, for accurate pricing and hedging, one can infer from betas that in certain cases it is costly and other times it is cheap as illustrated by high and low betas respectively. Thirdly, some REIT traits (i.e., conflicts of interest, internal funds, and market risk) have a high explanatory power than others in mergers. Finally, zero options values suggest that REIT mergers might be driven by strategic objectives as opposed to financial gains. Fifth, the statistical measures in the REIT industry tend to have counter-intuitive reasoning when compared with other capital markets.

ACKNOWLEDGEMENTS

An earlier version of this article was circulated under the title "Growth Options Computation." We are grateful for valuable comments received from Cambridge-Reading Ph.D. 2011 Research Day, ERES 2010 Conference and REP Reading Seminar participants, Chris Brooks, Martin Hoesli, Remmy Kampamba, Tobias Kuna, Anupam Nanda, Ogonna Nneji, Annisa Prima, Marcel Prokopczuk, SeungHan Ro, Simon Stevenson, Jia-Huey Yeh, Charles Ward, and anonymous reviewers. All the remaining errors are ours.

NOTE

A fractional put option is put option where one does not account for full option value.

REFERENCES

- Allen, M. T., Madura, J., & Springer, T. M. (2000). REIT characteristics and the sensitivity of REIT returns. *The Journal of Real Estate Finance & Economics*, 21, 141-152. doi:10.1023/A:1007839809578
- Amenc, N., Goltz, F., & Lodh, A. (2012). Choose your betas: Benchmarking alternative equity index strategies. *The Journal of Portfolio Management*, 39(1), 88-111. doi:10.3905/jpm.2012.39.1.088

- Amihud, Y., Lev, B., & Travlos, N. G. (1990). Corporate control and the choice of investment financing: The case of corporate acquisitions. The Journal of Finance, 45, 603-616. doi:10.2307/2328673
- Anderson, R. I., Benefield, J. D., & Zumpano, L. V. (2009). Performance difference in property-type diversified versus specialized real estate investment trusts (REITs). Review of Financial Economics, 18, 70-79. doi:10.1016/ j.rfe.2008.04.001
- Bairagi, R. K., & Dimovski, W. (2012). The direct costs of raising external equity capital for US REIT IPOs. Journal of Property Investment & Finance, *30*, 538-562. doi:10.1108/14635781211264513
- Benston, G. J., Hunter, W. C., & Wall, L. D. (1995). Motivations for bank mergers and acquisitions: Enhancing the deposit insurance put option versus earnings diversification. Journal of Money, Credit & Banking, 27, 777-788. doi:10.2307/2077749
- Bhagat, S., Brickley, J. A., & Loewenstein, U. (1987). The pricing effects of interfirm cash tender offers. The Journal of Finance, 42, 965-986. doi:10.1111/j.1540-6261.1987.tb03922.x
- Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637-654.
- Born, J. A., Officer, D. T., & McIntosh, W. (1989). The wealth effects of merger activities: Further evidence from real estate investment trusts. Journal of Real Estate Research, 4, 141-155.
- Byun, S. J., Kim, S., & Rhee, D. W. (2018). Ad hoc Black and Scholes procedures with the time-to-maturity. Review of Pacific Basin Financial Markets & Policies, 21, 1850006. doi:10.1142/S0219091518500066
- Campa, J. M., & Hernando, I. (2004). Shareholder value creation in European M&As. European Financial Management, 10, 47-81. doi:10.1111/ j.1468-036X.2004.00240.x
- Campbell, R. D., Ghosh, C., & Sirmans, C. F. (2001). The information content of method of payment in mergers: Evidence from real estate investment trusts (REITs). Real Estate Economics, 29, 361-387. doi:10.1111/1080-8620.00015
- Campbell, R. D., Ghosh, C., & Sirmans, C. F. (2005). Value creation and governance structure in REIT mergers. The Journal of Real Estate *Finance & Economics*, *31*, 225-239. doi:10.1007/s11146-005-1373-x
- Cappoza, D. R., & Sequin, P. J. (2003). Inside ownership, risk sharing and Tobin's Q-ratios: Evidence from REITs. Real Estate Economics, 31, 367-404. doi:10.1111/1540-6229.00070
- Cline, B. N., Fu, X., Springer, T. M., & Tang, T. (2014). Insider trading in REITs:

- Evidence from informed stock option exercise around seasoned equity offerings. *Journal of Real Estate Research*, 36, 511-540.
- Çolak, G., Yung, C., & Wang, W. (2008). Cycles in the IPO market. *Journal of Financial Economics*, 89, 192-208. doi:10.1016/j.jfineco.2007.06.007
- Daniels, K., & Phillips, R. A. (2007). The valuation impact of financial advisors: An empirical analysis of REIT mergers and acquisitions. *The Journal of Real Estate Research*, 29, 57-74.
- Fisher, S. (1978). Call option pricing when the exercise price is uncertain, and the valuation of index bonds. *The Journal of Finance*, *33*, 169-176. doi:10.1111/j.1540-6261.1978.tb03396.x
- Fuller, K., Netter, J., & Stegemoller, M. (2002). What do returns to acquiring firms tell us? Evidence from firms that make many acquisitions. *The Journal of Finance*, 57, 1763-1793. doi:10.1111/1540-6261.00477
- Gatchev, V. A., Spindt, P. A., & Tarhan, V. (2009). How do firms finance their investments: The relative importance of equity issuance and debt contracting costs. *Journal of Corporate Finance*, *15*, 179-195. doi:10.1016/j.jcorpfin.2008.11.001
- Ghosh, C., Petrova, M., & Xiao, Y. (2012). Do REITs use cash reserves efficiently? evidence from corporate acquisitions. *Journal of International Money and Finance*, *31*, 1953-1970. doi:10.1016/j.jimonfin.2012.05.019
- Gibson, V. A., & Lizieri, C. M. (1999). New business practices and the corporate property portfolio: How responsive is the UK property market? *Journal of Property Research*, *16*, 201-218. doi:10.1080/095999199368111
- Hackbarth, D., & Morellec, E. (2008). Stock returns in mergers and acquisitions. *The Journal of Finance*, 63, 1213-1252. doi:10.1111/j.1540-6261.2008.01356.x
- Hansen, R. G. (1987). A theory for the choice of exchange medium in mergers and acquisitions. *The Journal of Business*, 60, 75-95.
- Harrison, D. M., Panasian, C. A., & Seiler, M. J. (2011). Further evidence on the capital structure of REITs. *Real Estate Economics*, *39*, 133-166. doi:10.1111/j.1540-6229.2010.00289.x
- Hartzell, J. C., Kallberg, J. G., & Liu, C. H. (2005). The role of the underlying real estate market in REIT IPOs. *Real Estate Economics*, 33, 27-50. doi:10.1111/j.1080-8620.2005.00111.x
- He, W., Lee, Y.-S., & Wei, P. (2010). Do option traders on value and growth stocks react differently to new information? *Review of Quantitative Finance & Accounting*, *34*, 371-381. doi:10.1007/s11156-009-0134-y
- Hitt, M. A., Hoskisson, R. E., & Ireland, R. D. (1990). Mergers and acquisitions and managerial commitment to innovation in M-form firms. *Strategic Management Journal*, 11(S), 29-47.

- Kim, I. J. (1992). Option pricing: A general equilibrium approach. Review of *Quantitative Finance & Accounting*, *2*, 97-110. doi:10.1007/BF00243987
- Leland, H. E. (2007). Financial synergies and the optimal scope of the firm: Implications for mergers, spinoffs, and structured finance. The Journal of *Finance*, 62, 765-807. doi:10.1111/j.1540-6261.2007.01223.x
- Marcato, G., Sebehela, T., & Campani, C. H. (2018). Volatility smiles when information is lagged in prices. North American Journal of Economics & Finance, 46, 151-165. doi:10.1016/j.najef.2018.03.004
- Margrabe, W. (1978). The value of an option to exchange one asset for another. The Journal of Finance, 33, 177-186. doi:10.1111/j.1540-6261.1978. tb03397.x
- Mueller, G. R. (1998). REIT size and earnings growth: Is bigger better, or a new challenge? *The Journal of Real Estate Portfolio Management*, *4*, 149-157.
- Officer, M. S. (2004). Collars and renegotiation in mergers and acquisitions. The *Journal of Finance*, *59*, 2719-2743. doi:10.1111/j.1540-6261.2004.00714.x
- Peiró, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23, 847-862. doi:10.1016/S0378-4266(98)00119-8
- Reinganum, M. R., & Smith, J. K. (1983). Investor preference for large firms: New evidence on economies of scale. The Journal of Industrial Economics, 32, 213-227.
- Schulte, R. (2018). What do we know about new venture investment time patterns? Review of Pacific Basin Financial Markets & Policies, 21, 1850004. doi:10.1142/S0219091518500042
- Sebehela, T. (2008). Valuing a listed property fund or trust on the Johannesburg Securities Exchange (JSE) using a real options technique. ICFAI Journal of Derivatives Markets, 3(3), 64-71. Retrieved from https://ssrn.com/abstract=1923342
- Sebehela, T. (2015). Exchange options in the REIT industry (Unpublished doctoral dissertation). University of Reading, UK.
- Sorwar, G., & Sudarsanam, S. (2010). Determinants of takeover premium in cash offers: An option pricing approach. Journal of Business Finance & Accounting, 37, 678-714. doi:10.1111/j.1468-5957.2010.02190.x
- Subramanian, A (2004). Option pricing on stocks in mergers and acquisitions. The *Journal of Finance*, *59*, 795-829. doi:10.1111/j.1540-6261.2004.00649.x
- Timmons, J. A., & Bygrave, W. D. (1986). Venture capital's role in financing innovation for economic growth. Journal of Business Venturing, 1, 161-176. doi:10.1016/0883-9026(86)90012-1
- Womack, K. S. (2012). Real estate mergers: Corporate control and shareholder wealth. The Journal of Real Estate Finance & Economics, 44, 446-471. doi:10.1007/s11146-010-9251-6